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FORCED CONVECTION OVER ROTATING BODIES
WITH NON-UNIFORM SURFACE TEMPERATURE
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(Received 23 February 1978 and in revised form 24 May 1978)

Abstract— An analytical method is developed for obtaining the temperature distribution and the rate of
heat transfer in laminar boundary-layer forced convective flow over a rotating body of revolution having
a step change in surface temperature. By using a special coordinate transformation and an appropriate
series expansion of the temperature, the energy equation becomes expressible in terms of a set of partial
differential equations which contain universal functions. These universal functions can be tabulated once
and for all. Numerical examples are presented for an isothermal surface and for a surface which has a step
discontinuity in temperature for the special cases of a rotating sphere and a rotating disk. These results
are compared with values obtained from other formulas available in the literature.

NOMENCLATURE
( aﬁz(é)PIf)"’3
b, ;
. 3!
2
B, rotation parameter, (— —) for sphere,
33U,
nQR .
~—— for disk ;
o
/s dimensionless stream function, defined
in (5a, b);
g dimensionless rotating velocity, defined
in {5¢});
L, characteristic length for body;
Nu, Nusselt number;
Pr, Prandt! number = v/x;
q.,  wall heat flux;
r, radius of body at x;
R, sphere or disk radius;
RU,
Rep, Reynolds number = . ;
T, temperature ;
u, velocity component in the x direction ;
U,,  velocity at outer edge of boundary layer;
U,, approach velocity;
v, velocity component in y direction;
w, velocity component in rotating direction;
X, coordinate measured along surface from
front stagnation point;
Xq,  location in x direction where surface
temperature has a step change;
X, coordinate defined in (9a});
A coordinate measured normal to x ;
z, coordinate measured in rotating direction.
Greek symbols
o, thermal diffusivity ;
B, x/R;
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1, dimensionless y coordinate, defined in (4);
8, dimensionless temperature = T_T,,_ ;
T,—T,

A, wedge parameter, defined in (6);
v, kinematic viscosity;
&, dimensionless x coordinate, defined in (3);
&,,  dimensionless coordinate defined in (9c);
L, dimensionless coordinate defined in (9b);
Q angular velocity.

Subscripts
w, evaluated at wall;
o0,  evaluated at approach conditions.

1. INTRODUCTION

By SPINNING an axisymmetrical body in a forced
flow field, the fluid near the surface of the spinning
body is forced outward in the radial direction due to
the action of centrifugal forces. This fluid is then
replaced by fluid moving in the axial direction and,
therefore, the axial velocity of a fluid in the
neighborhood of a spinning body has a higher value
as compared to that for a non-spinning body. This
increase in axial velocity results in enhancing the
convective heat-transfer rate between the body and
the fluid.

The application of the above-mentioned idea in
order to develop rotating systems for enhancing the
heat-transfer rate has been the subject of many
investigations for the past two decades. For example,
Hickman [1] envisioned the possibility of rotating
condensors for sea water and spacecraft power
plants. Ostrach and Braun [2] proposed a method of
cooling the nose cones of space vehicles during re-
entry by spinning the nose in order to set the
surrounding fluid into a rotating motion. By veil
cooling of the hot rotating surfaces, Rossler and
Mitchell {3] reported that the performance of radial
flow gas turbines has been improved. The number of
journal articles dealing with flow and heat transfer in
rotating systems has also been increasing rapidly.
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The interested reader may refer to a monograph by
Kreith [4], as only the articles that are closely
related to the present investigation will be cited here.

The heat transfer from an isothermal rotating
sphere was first analyzed by Siekmann [5] using the
Blasius series technique. An exact analysis for the
laminar forced flow against a rotating disk having
either a uniform surface temperature or a power-law
surface temperature distribution was given by Tien
and Tsuji [6]. Recently, the authors [7] have
analyzed the momentum and heat transfer rates
through laminar boundary layers over rotating
isothermal bodies of revolution of fairly arbitrary
shape by employing Merk’s series expansion tech-
nique [8]. Numerical results were presented for a
sphere and a disk. Chao and Greif [9] have
proposed a technique for solving the non-uniform
surface temperature case by expanding a two-term
velocity profile in a Taylor series in terms of the
coordinate normal to the surface and then using a
unique coordinate transformation which is similar to
that used for two-dimensional stationary bodies
[10]. Following this approach, they were able to
express the solution in terms of universal functions
and as a perturbation from Lighthill’s [11] one-term
linear velocity profile result.

For a non-rotating body, the Prandtl number
alone determines the thickness ratio of the momen-
tum to the thermal boundary layer and, therefore, for
large Prandtl numbers or for the region near the
point of discontinuity, the two-term velocity profile
may accurately represent the actual velocity profile
in the regions where significant heat transfer occurs.
For a rotating body, however, this thickness ratio
depends not only on the Prandtl number but also
inversely on the rotating velocity. This implies that
for high rotating velocities, the momentum boundary
layer—thermal boundary-layer thickness ratio de-
creases, and, therefore, the velocity profiles in the
regions where significant heat transfer occurs cannot
be accurately represented by a two-term expression.
The error in using the two-term velocity profile in
solving the energy boundary-layer equation becomes
especially significant for lower Prandtl numbers. In
recognizing this difficulty, Chao [12] extended his
original technique [10] to take into account more
terms in the velocity profile in the solution of the
energy boundary-layer equation. In his technique,
the temperature profile was expressed as a multi-
infinite series and the accuracy of the results depends
both on the convergence of the series and the
method of series truncation. The accuracy of Chao’s
results has only been discussed for the case of a
rotating disk.

In the present investigation, an entirely different
analytical method is proposed. The great advantage
of the present method is that one can refine a
solution by obtaining more terms in the series
solution in a straightforward way, thus taking into
account as many higher order terms in the velocity
profile as one desires. The two-term velocity profile

limitation used in [9] can therefore be relaxed. In
addition, our temperature results have less terms in
the series for the same order of the velocity profile as
compared to Chao’s [12] method, and are thereby
easier to apply for both uniform and non-uniform
surface conditions. Numerical results are presented
below for a rotating sphere and a rotating disk.

2. PROBLEM STATEMENT AND ANALYSIS

Consider the steady, laminar axisymmetrical forced
convective flow of an incompressible fluid over a
rotating body. An initial portion of the rotating body
of length x, is kept at the same temperature, T, as
that of the incoming fluid, and the remaining portion
of the rotating body has a surface temperature step
change to a uniform value T,. The physical model
and the coordinate system are shown in Fig. 1. The
resulting temperature variation is limited so that
changes in fluid properties are assumed to be small
and thus are neglected, and the velocities involved
are not so large that viscous heating is important.

F1G. 1. Physical model and coordinate system.

With the above assumptions, the energy
boundary-layer equation is linear and the solution
for any arbitrary surface temperature distribution
can be obtained by superposition. If one chooses
non-rotating coordinates x, y and z, with x repre-
senting the distance measured along a meridian
curve from the forward stagnation point of the body,
y representing the distance normal to the body, and z
the distance in the direction of rotation, the
boundary-layer energy equation for the problem is

00 a0 8%0

=g 1
u@x v@y a@yz 1)

with the boundary conditions

B(x,0) = 1(x—x;)
B(xo,y >0)=0 (2)
f(x,0)=0

where 0 = (T-T,)/(T,—T,) and 1(x—x,) is the
Heaviside unit operator. The general method of
obtaining the velocity components u, v and w, has
been reported in the previous paper [7], and will be
briefly summarized here along with the results.
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To solve the momentum equation, the following
dimensionless coordinate transformation is intro-
duced, following Merk [14],

U, r? dx

x=t= JU L

y=un= (25 )”’ :J]w Gf)(%) @

The velocity components u, v and w which satisfy the
equations of continuity and momentum and the
boundary conditions are given in [7] as

(€)

u=U,—

“an (5a)

r U,
L (2{Re,)'?

[f+2§f (A+2éﬂ—1>n‘;ﬂ (Sb)

dg
w=rQg(¢,n) (50
where A is a “wedge parameter” defined by
24U,
©®)
U dé

The dimensionless stream function f(&,#) and di-
mensionless rotating velocity function g(&,n) satisfy,
respectively,

. , ¢dr r’a?
rregrean-ra (5 0T
af /r?-f_
o rL-rZ] o

2 + _Ed_r —_ '_‘?i
g'+f9'~ gf( ) S[f ! 65} (7b)
with the boundary conditions

f=f'=0,g=1 for n=0
f'=1,g=0 for n— 0.

(8a)

(8b)
In the foregoing, the primes denote differentiation
with respect to #. Although the velocity components
u and v do not depend on the function g explicitly,
the solution for f(&,n) must be obtained by a
simultaneous solution of (7a) and (7b). The general
solution method using Merk’s series is proposed in
[7], in which numerical results were reported for the
rotating sphere and the rotating disk.

The main objective of the present analysis is to
obtain the solution of the energy equation (1)
satisfying the boundary conditions (2). To this end,
we further introduce a transformation [13] as

é 3/471/3
x=[i-(3)]
b
_ _%)ﬁ (9b)
with
o 7, r? dx
o= L TCEL 9c)

and where b(£) is an undetermined parameter to be
specified later. The transformations (9a—c) are a
generalization of the transformations used by Chao
and Cheema [15] in treating forced convection in
wedge flow with a step discontinuity in surface
temperature. Making use of the velocity components
u and v given by (5a,b) and transforming the
variables x to X and 5 to { according to (9a,b), the
energy equation (1) becomes

3% Pr b7 1(1—-X%_3
s Xy )y "
2x? db _éf 700  Pr of o0
TP & aﬂac 5703 35 =0 00
with the boundary conditions
0(X,{)=1 for {=0 (11a)
X, )=0 for {— 0. (11b)
In (11ab), 0<X <1 and 0<¢{ <o, and the

argument 7 of the velocity function is related to {
according to (9b). At the location where the
temperature has a discontinuity, £ = £, and X =0,
so { = . The entrance condition merges into {11b).

To obtain the solution to (10), we first expand
S, n)and g{&, n) in power series of the form

fem= 3 =y (12)
n=2 n:
and
gEm =1+ z L (3)

The quantities (2&/r dr/d¢- rzgz/U 2) and (4¢/r dr/dE)
in (7a,b) are functions of x only, and since x is
transformed to £, these quantities can be treated as
functions of ¢ only. The coefficient’s a,’s and b,’s in
(12) and (13) can therefore be determined by
substituting (12) and (13) into (7a) and (7b),
respectively, and equating the coefficients of like
powers in 1. The results are

o%f l
a2 B 5’72 u-"-()’
28 dr r3Q?
a3 = —A —— —
3 r d¢ U?
28 dr r}Q? ¢ 14
“s T T
2¢ dr r}Q?
= az(2A —1)-2b? —
as = aj( )— dé U2
+2¢a,d,,...,etc,, and J
0
bi=5| . by=0
M in=
v (15)
b, 3 ==y, €1C,
r d

where primes denote differentiation with respect to &.
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Substituting n = {X/b into (12), the series for the [
function becomes

_a2l a3£x3
2! b2 31 p°
0444 sC
g XX (19
from which we obtain
Uy, 8l al oy,
Eiry bX+2' b2X +3?b3X . 4N
and
o a4 3353
— ==X X3
oE 21 +3'b3
ag ¢* 4 as {° 5

We further seek a series solution for #(¢,() of the
form

18

= 2, 6,(0X" (19
a=90
with
8,(8,0) =1, 6,(£,0)=06,((,0)=... =0 (20a)
o(¢, 00) = 6,({,0) = ... =0. (20b)

By substituting (16), (17), (18) and (19) into (10),
and collecting terms of like powers in X, we obtain a
sequence of second order, linear differential equa-
tions which the 8,’s have to satisfy. These equations
(for n = 1) depend explicitly on the Prandtl number
and on the a,’s in the dimensionless velocity function
(16), and we therefore rewrite the 6,’s in terms of
universal functions so that the solutions can be
evaluated once and for all. To this end, let us rewrite
8,,0,,08;,¢etc, as

= M0, 1)
92 = M292’1 +N92‘2 (22)
= M393,1+P63,2+MN93’3 +Q93’4 (23)

etc, ..., with
303 (7%
T 2ab" 0 2a,p?
a 3¢a.
po- s g%
a3 Pr a;

By using these universal functions and repeating the
same operations as described before, we find that 6,
8, and the 8, ;s satisfy the following equations:

G5+30%0, =0 (24)

§;+3020, -3¢0, = 6, @5)

03,1 430%0,,,-6(0,,, = (%0, ~(*0, (26a)

G5 2+ 30%0, ,— 600, , = {*0; (26b)

05,0 +30%05 1 =905y = (30, ~20%0y,  (27a)
05,2+ 30%05 ,— 985 , = 30°6, 27b}

33+ 30205 59005 5
= (49'1 _5351 +£3g'z,z _2‘:292,2
54+ 30%05 49005 4 = (=302 +20)8,
with the associated boundary conditions
6,(¢,0) =1, 1(5 0)— 2, 1E0)=...= 93,¢(§,0) =0

00(&, 00) =8, (¢, 00) = 92,1(5, w)=...= gs.a(éa )
=0.

In the above equations (24)-(27d), we have defined
the undetermined parameter b{¢) as b(¢)
= {a, Pr/31Y*”, and this value has been substituted
into the LHS of the equations. The primes appearing
in these equations denote differentiation with respect
to {. By choosing the parameter b(¢) in this form, we
are able to express equations (24)-(27d) in forms
that are independent of the Prandt! number and A,
and they can therefore be solved once and for all.
For wedge flow (non-rotating), a, becomes constant
and reduces to the form defined in [15].

Solutions for equations (24) and (25) can be
obtained in closed form and are

(27¢)
(27d)

o TR
Gy =1~ ?{1/737‘ (28)
3
6,(0) = 51“(1/3)(:[“4’/3) F@3,.0) @9
Their derivatives at the surface are, respectively,
3
0,(0) = —m= —1.1198 (30)
and
8,(0) = 1/15. (31)

Equations (26a), (27a) and (27b} are precisely
identical to those given in [15] for wedge flow with a
non-rotating body (in [15] the notation is F,=8,,
Fy,=0,,, and F;, =0;,). These equations are
numerically integrated in [15] and the universal
functions tabulated in the paper can therefore be
directly applied to the present problem. The remain-
ing equations, (26b), (27c) and (27d) were numeri-
cally integrated using a fourth order Runge~Kutta
procedure with a uniform step size of A = 0.01. The
resulting values of 0, ,, 05 ; and 0, , are tabulated
in Table 1. To calculate the surface heat flux, the
associated surface derivatives are required, and they
are tabulated for the reader’s convenience as follows:

8,(0) = — 1.1198; &,(0)=1/15;
, 1(0) =0.81748 x 1072; @, ,(0) = 0.40871 x 10~ *;
8;.1(0) =0.17204 x 10™2; 8, ,(0)=020737 x 10~ !;
8, 3(0)=0.12903 x 10™1; &, ,(0) =0.64167 x 10~ .

With the availability of these universal functions
and their surface derivatives, the determination of
the temperature field in the boundary layer and the
local heat-transfer rate for any arbitrary Prandtl
number and rotating parameter reduces to a simple
algebraic operation. For convenience, the dimension-
less temperature and local wall heat flux can be
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Table 1. Universal functions 8, ;

¢ f,, %10 B, % 10 854 x 10
0.0 0 0 0
0.1 0.04088 0.01291 0.06075
02 008189 002590 0.10351
03 0.12318 0.03918 0.11732
04 0.16462 0.05305 009902
0.5 0.20522 0.06781 0.05279
0.6 024271 008395 —001118
0.7 027341 0.10141 —0.07917
08 0.29274 0.11982 ~0.13729
0.9 0.29646 0.13781 —0.17487
1.0 0.28227 0.15293 —0.18704
11 025108 0.16183 —0.17544
12 020732 0.16131 —0.14691
13 0.15795 0.14969 ~0.11066
14 0.11037 0.12795 —007516
1.5 007032 0.09980 ~0.04602
16 0.04063 0.07044 —0.02535
1.7 0.02116 0.04467 —001252
18 0.00988 0.02528 ~0.00553
19 0.00411 001269 —0.00217
20 0.00152 0.00561 —0.00076
2.1 0.00049 0.00218 —0.00023
22 0.00014 0.00074 —0.00006
23 0.00004 0.00021 —0.00001

The universal functions for 8, ,, 85, and 8,, can be
found in Table | of [15] in which these functions are
denoted, respectively, by F,, F5 , and F ,.

recast in terms of these universal functions and their
derivatives as

05,0, X) = 3 0,(60X"
n=0
= 0o+ M8, X +(M?0, , + N8, ,)X?
+(M393,1 +P93,2
+MNB; ,+008; )X +... (32)

and

k(@T)
qw = — D
ay y=0

= 271230 IBK(T, — TQ(%)UZ
U\ 1,3<_%>
X(Uw>L2X (Pra,) ), (33a)
where
=) 6,(£,0)X"

(%)
6C 1$=0 n=0

= 1.11985— M/15X — (0.81748 x 10~ 2M?
+0.40872 x 107 IN) X2 - (0.17204 x 10~ 2M?
+0.20737 x 107 'P 4+ 0.12903 x 10~ 'MN
+0.64167 x 107 1Q)X3 +....

(33b)

As has been demonstrated in the text, the
derivation of the above equations does not impose
aly approximations or limitations, and therefore
they are an exact form of series expression. With
straightforward numerical integration of the higher

order terms of the 6,s in (19), we may readily
provide more terms in the series solution (32) and
(33a,b) such that the higher order terms in the
velocity distribution (12) can be properly accounted
for in the solution to the energy equation. The
accuracy of the results by using a finite number of
terms in the series provided in this paper depends
largely on the convergence of the series, i.c. on the
Prandtl number, rotating velocity and the range of
X. For small Prandtl number and large rotating
velocity and X ~ 1, the series may become semi-
divergent and Euler’s summation method [16] may
be used for summing the series. For large Prandtl
number, or in the region close to the point of surface
temperature discontinuity, the thermal boundary-
layer thickness is comparatively much thinner than
that of the velocity boundary layer so that a linear
velocity distribution may be used for the solution of
the energy equation as done by Lighthill [11]. This is
the case of retaining the first term in (16), ie.
f = (ay/2)(¢*/b*)X?. By substituting this velocity
profile into (10) and performing a similar manipu-
lation as before, the resulting temperature field is
0, =0,+00; ,X°+... (34)
where the subscript / denotes the solution for a linear
velocity profile. The corresponding wall heat flux is

Gu, = 27123 PK(T, ~ T,)

Re \Y2/U,\ r
X (—L> ( )—X"‘(Praz)”"‘
4 U,/ 2

x [1.11985—0.64167 x 10~ 'QX?].

(33)

These two expressions can also be obtained from
(32) and (33a,b) by simply letting Pr— co. By
comparing equations (34) and (35) with (32) and
(33a,b), the excess terms appearing in the latter
equations are obviously due to the contribution of
the second and third terms of the velocity distri-
bution in (16). The application of the present method
to the cases of a rotating sphere and a rotating disk
will be made in the next section.

3. APPLICATION TO A ROTATING SPHERE

In this section, we would like to demonstrate how
one can apply the general equation (33a,b) to
calculate the heat transfer characteristics of a
rotating sphere. For a spherical body, it is known
from potential flow theory that U,/U
= 3/2sin X/R, and from the geometry, r/R = sin x/R.
With U,/U_ and r/R thus defined, the quantities
(2&/r dr/dE-r?Q?/U2) and (4¢/r dr/d&) appearing in
(14) and (15) become, respectively,

2¢ dr r3Q? BA 3%
r d¢ U2 B (36)
4¢ dr
2T o 37

rodE
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where

(2 RQ)Z
B=[>—
3U,

&=1-15cos B+0.5cos’ B
A 4cos f—6¢cos? f+2cos* f
B 3sin* g

and

Defining a local Nusselt number as Nu = Rq, /k(T,
— T, ) and replacing the characteristic length L by R,
we obtain

NuReg'? = 0.38914(Pra,)*?

U 00
x =t f—x**f*“‘*(——) (38a)
U, R L 00/ =0
in which (—06/0() .., is given by (33b) but with
3A(1+B) ABb,
M="—"_" =1
2a,b a,b?
1 2ABb?  2¢d,
P=—|(1-20)+ "1 - , (38b)
Pr as a,
0 2
a

The values of a,(¢) and b,(£) in (38a,b) can be

Table 2. Comparison of NuReg !/

obtained from the solution of the momentum
boundary-layer equations in the following Merk’s
type of series expressions refined in {8] as

dA
a (&) = f"(A,0) = f5'(A,0)+2¢ @ 1A 0)

+4:2ﬂ (A, 0) +...

= (39)
dA
bi(&) = g'(A.0) = go(A,0)+ 2¢ Eg'x A0)
2d2A ’
+4¢ d—ézgz(A,0)+... (40)

and the values of f/’(A,0) and gi{A, 0) are tabulated
for i =0, 1 and 2 for various values of the rotation
parameter in [7].

To examine the accuracy of the present formula,
we first consider the case of an isothermal surface.
Under this condition X = 1 and the error resulting
from using a finite number of terms in the sequence
{33b) is the largest due to the slower convergence for
larger values of X. The local heat-transfer results,
expressed as NuReg /2 for Pr = 1.0 are summarized
in Table 2. Two sets of our data are presented in the
table. The first set of data were obtained by using the
values of a, and b, calculated from the three term
Merk’s series (39) and (40) using the information
given in [7], with the value of a, obtained by
Taylor’s non-uniform interpolation method. The

calculated from various methods for an isothermal rotating sphere in forced flow;

Pr=1
B=1 B=4
Present analysis Present analysis
Equation (38a) Equation {38a)
with Merks 2-term  3-term with Merk’s
a, = fo'(A,0)  series  velocity velocity a, = f3'(A,0)  series
Equation b, = g,{A,0) 3terms profile profile Equation b, =go(A,0) 3terms Sickman
x/R (38a) ay =0 [7] [9] [12] (38a) d, =0 [7] [5]
00 0.9493 0.9493 09588 08904 09589  1.0007 1.0007 1.0214 10214
0244  0.9390 0.9389 09482 08815 0.9898 0.9897 1.0099  1.0101
0474 09116 0.9110 09195 08570 0.9608 0.9602 09789 09788
0717  0.8635 0.8620 0.8688  0.8143 0.9101 0.9082 09239 09237
0.951 0.7991 0.7955 0.7998 07567  0.7792* 08422 0.8376 0.8484  0.8485
1.103 0.7482 0.7419 0.7436 07104 0.7885 0.7804 0.7862  0.7875
1.215 0.7063 0.6968 0.6961 06716  0.7064* 0.7445 0.7319 07328  0.7362
1.303 0.6495* 0.6575 06544  0.6378 0.6888* 0.6892 06851 06918
1374  06181* 0.6223 06171 06078 06275 0.6544* 0.6504 06414  0.6528
B =10
00 1.0670 1.0670 1.1141 06933  1.0914*%
0.244 1.0555 1.0553 1.1014  0.6885
0474 1.0248 1.0239 1.0676  0.6755
0.717 0.9709 0.9685 10061  0.6534
0.951 0.8991 0.8930 09218 06245  0.9264*
1.103 0.9426 0.8315 0.8516 06012
1.215 0.7968 0.7790 0.7904  0.5809  0.8042*
1.303 0.7535* 0.7323 0.7349  0.5645
1374 0.7144* 0.6892 0.6826  0.5440  0.7223*

*Euler’s summation technique was used.
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second set were obtained by using the local similarity
solution, i.e. one term in the series [a, = f7'(A,0)
and b; = g5(A,0)]. By comparing these two sets of
results, the maximum discrepancy is about 3.5%; for
the range of parameters studied. It is therefore
recommended that for engineering applications in
which extreme accuracy is not strictly essential, that
the local similarity values of a, and b, may be used
for calculation of the heat-transfer characteristics at
the surface. By comparing our data with that
obtained by the three term Merk’s series [7] and the
four term Blasius series solution of Siekmann [5]
(only the case of B = 4 was given in his paper), the
agreement is considered to be satisfactory. The
results obtained from the formula using the two term
velocity profile of [9] generally underestimate the
values, especially for the case of B=10. This

Table 3. Heat-transfer rate, NuRey /2, for a rotating sphere

-with Pr=1
NuRegp 2
Step-change
position x/R B=1 B=4 B=10
xg/R =022 0.244 1.5415 1.6644 1.8445
04739 09514 1.0049 1.0765
0.7165 0.8746 0.9224  0.9853
0.9507 0.8039 0.8474  0.9052
1.1030 0.7512 0.7918 0.8465
1.2148 0.7086 0.7480 0.7997
1.3027 0.6512*%  0.6907* 0.7556*
1.3744 0.6195* 0.6559* 0.7161*
Xo/R = 0.90 0.9507 1.6866 1.8333 2.0493
1.1030 1.0544 1.1269 1.2345
1.2148 0.9011 0.9582 1.0429
1.3027 0.7846* 0.8386* 0.9248*
1.3744  0.7267* 0.7739* 0.8503%

*Euler’s summation technique was used.

suggests that under this condition the use of the
quadratic velocity profile in the analysis of the
energy equation is not adequate. Also included in
Table 3 are the Nusselt numbers calculated by the
series solution [12] in terms of curvature parameters
&, s by retaining a three term velocity distribution.
Twelve terms in the series, equation (22b) of [12],
were used in the calculation. A significant improve-
ment is seen for both B = 1 and 10. o

The heat-transfer rate for a non-uniform surface
temperature can also be readily obtained from
(38a,b). The parameter &, in the transformed
variable X now becomes

Xg X
& =1 _%—cos<i)+%cos(f).

The heat-transfer rates, expressible as NuReg /2, for
non-uniform surface temperatures for the special
cases of xo/R = 0.22 and x4/R = 0.90 are tabulated
in Table 3 for B =1, 4 and 10. To our knowledge
there is no previously published data available for
comparison with our results.

4. APPLICATION TO A ROTATING DISK

The second numerical example considered is the
heat transfer from a finite rotating disk of radius R,
with or without a free stream velocity U, impinging
normally onto the disk surface. Under this condition,
r=x, U,/U, =2x/aR, B = (zRQ/2U ) and, there-
fore, A = 0.5 which is a constant. The a, and b, now
become a; = [ f3'(A,0)]r=0.5 and b, = [g5(A,0)]r=0.5
as given by (39) and (40). Since a, is independent of
£ a5, =0.

Let us define the Nusselt number for this problem
in the same manner as that done by Tien and Tsuji
{6]. Then (33a,b) can be recast in the following form
as
v

Nu =
Y T =T )(CE+ Q)7

P *\ 1/3
:< ’3“ ) 7 [1-11985-02:X

~(0.07357+0.23125, )e2X 2
—(0.04645 +0.218975,

+0.11068,)e* X +...] 41

where

2U Xo 31~1/3 (2)1;’2
=—Z: X=|1-|{— sa¥=————a
C="x [ (x)_J I

_ Ba*b, S, = B(a*b,)? .
1‘“[1+B]5/4’ Z“[1+B]3/2’
e= 3P Pr)y 13

The numerical constant a* depends on the rotation
parameter, B, and has been calculated by Hannah
[17] (a* = 2a in her paper). It may also be obtained
by the above relation using the value of a,
= [f5'(A,0)]s= 0.5 reported by the authors [7]. The
value of b; can be shown to be related to b of [17]
by the relationship

S

1+ B)'4
by = [go(A, 0)]az0s = — £—(E)T,)2—“b

and can be found in [7] or by using b from [17].

For a disk at a uniform temperature, x, = 0, and
we simply substitute X =1 in (41). By a completely
different technique, Chao and Greif [9] have ob-
tained an expression for an isothermal rotating disk.
In the present notation, it is

42)

Pra*\!/?
Nu= (—3—~) [1.11985—0.18868¢
~0.072716% ~0.05079¢ — .. J @3)

By comparing (41) with X = 1 with (43), it is seen
that the functional forms of both equations are quite
similar. The first term on the RHS of both equations
is identical, and represents the contribution of the
linear component of the velocity profile. The second
terms are almost identical and differ only slightly in
the value of the numerical coefficient, as do the first
elements of the third and fourth terms in (41) when
compared with the third and fourth terms of (43).
These terms are contributed by the guadratic
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component of the velocity profile. The elements of
the third and fourth terms in (41) which contain S,
and S, are contributed by the third and fourth order
terms of the velocity profile, and these elements are
naturally missing in (43) since only the quadratic
velocity profile was used in its derivation. For a non-
rotating body, B = 0, and both S, and S, are equal
to zero. In this case, for moderate Prandtl numbers,
the two-term velocity profile is adequate for obtain-
ing a solution to the energy equation. For B — oo,
i.e. for pure rotation, we get S; = —0.314 and S,
= 0.0493 by using the values of a and b given in
[17]. The S, and S, are of the same order of
magnitude as the numerical coefficient in the same

5. CONCLUSIONS

A new formula is presented for calculating the rate
of heat-transfer from a rotating body, having a step
change in surface temperature, placed in a forced
flow stream. A great advantage of the present
method 1s that one can refine the solution by
obtaining more terms in the series in a straightfor-
ward manner, thus taking into account more terms
in the velocity profile. The accuracy of using a finite
number of terms in the series solution is discussed for
the cases of a rotating sphere and a rotating disk
having uniform surface temperatures. For engineer-
ing calculations, it is recommended that the simi-
larity solution value, f;'(0) and g5(0), may be used

Table 4. Comparison of Nusselt number for forced flow against a rotating disk with uniform surface temperature

Nu
Pr B Present Three-term Two-term
analysis velocity velocity Tien and
equation (41) representation representation Tsuji
X=1 [12] [9] [6]
1 0 0.755 0.7643 0.7643 0.762
1 0.652 0.659 0.628 0.658
4 0.546 0.548 0.484 0.557
oo 0.3961* 0.400 0.309 0.396
10 0 1.748 1.752 1.752
1 1.529 1.518 1.535
4 1.330 1.297 1.340
o0 1.139 1.059 1.134

*Euler’s summation technique was used.

term, and, for moderate Prandt! numbers but large
rotation parameter values, it is thus seen that the
two-term velocity profile is not adequate in obtain-
ing the solution to the energy equation. Using a
three-term velocity profile, Chao [12]* reported the
Nusselt number in the present notation as

ra*\'3
Nu=( 3 > [1.11985—0.18868¢

—[0.072714+0.23647S,]e +...]. (44)

Surprisingly, the functional form of (44) is quite
similar to our equation with a slight difference in the
numerical coefficient in the second and third terms.
A numerical comparison of the results given by (41),
(43) and (44), along with those of Tien and Tsuji [6]
obtained by a numerical integration technique, is
presented in Table 4. For the case of B=4 and Pr
= 1, our results deviate by —0.2% from those of [6].
This degree of accuracy is also evident for B — o
and Pr=1. For Pr=1 and B =4, the two-term
velocity formula (43) deviates by — 13.4%. Signifi-
cant improvement is seen when the three-term
velocity formula (44) is used.

*The ¢, and ¢, defined in [12] relate to s and S, as &; =
—¢&, £, = —4(2)V%/3 S,¢%. The positive sign appearing in
front of the second and third terms of (28) in [12] should
be negative.

for a, and b, in the calculation using our formula
without introducing a significant error for the
rotating sphere for Prandtl numbers equal to or
larger than 1. Our formula may also be used for
mass-transfer problems by simply replacing 6 by
(C-CIC,,—C,), and the results may be extended
for any arbitrary surface temperature or con-
centration distribution by the use of superposition.
Finally, in order to take into account a prede-
termined number of terms in the velocity profile in
the solution of the energy equation, our formula
provides probably the most simple and rapid
calculation procedure for the temperature field and
the local heat flux for non-isothermal surface
conditions as any yet presented in the literature.
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CONVECTION FORCEE SUR DES CORPS TOURNANTS AVEC
TEMPERATURE PARIETALE NON UNIFORME

Résumeé — On développe une méthode analytique pour calculer la distribution de température et le flux de
chaleur en convection forcée avec couche limite laminaire sur un corps de révolution en rotation et ayant
un changement de température pariétale en échelon. En utilisant une transformation spéciale des
coordonnées ¢t un développement en série approprié, 'équation d'énergie s'exprime en un systéme
d’équations aux dérivées partielles qui contient des fonctions universelles. Ces fonctions peuvent étre
tabulées une fois pour toutes. On présente des exemples numériques pour une surface isotherme et pour
une surface ayant une discontinuité de température en échelon, dans les cas particuliers d’une sphére et
d’un disque en rotation. Ces résultats sont comparés avec des valeurs obtenues a partir d’autres formules
disponibles dans la bibliographie.

ERZWUNGENE KONVEKTION AN ROTIERENDEN KORPERN
MIT UNGLEICHFORMIGER VERTEILUNG DER
OBERFLACHENTEMPERATUR

Zusammenfassung-—Ein analytisches Verfahren wird entwickelt, um die Temperaturverteilung und die
Wirmestromdichte zu ermitteln, die sich in einer erzwungenen Konvektionsstromung mit laminarer
Grenzschicht an einem rotierenden Umdrehungskdrper ergibt. Die Oberflichentemperatur wird dabei
sprungformig verandert. Durch Verwendung einer speziellen Koordinaten—Transformation und einer
geeigneten Reihenentwicklung fiir die Temperatur 148t sich die Energiegleichung durch ein System
partieller Differentialgleichungen ausdriicken, die universelle Funktionen enthilten. Es ist méglich, diese
universellen Funktionen ein fiir allemal zu tabellieren. Es werden numerische Beispicle anhand der
Spezialfiille einer rotierenden Kugel und einer rotierenden Scheibe gezeigt, und zwar jeweils fiir eine
isotherme Oberfliiche und fiir eine Oberfliche, die eine sprungformige Temperaturinderung aufweist.
Diese Ergebnisse werden mit Werten verglichen, die mit Hilfe von anderen Gleichungen aus der
Literatur gewonnen worden sind.

BbIHYXHAEHHAS KGRBEKLIMSA OKOJIO BPAIAIOWAXCA TEJ IPU
HEOIHOPOAHON TEMIIEPATYPE [MOBEPXHOCTH

Annorauws — PaspaboTan aHaIHTHYECKHHA METO[ ONpPEAE/]CHHs MOA TEMIEPATYP M HHTEHCHBHOCTH
TenJ1006MeHa 8 TAMMHAPHOM NMOTPAHHYHOM CJIO€ NPH BHIHYKIEHHONW KOHBEKUHH OKOJIO IBHXYLUETOCH
T€Na BPAILUCHUS NMPH CTYNEHYATOM HM3MEHEHHH TeMNepaTyphl noBepXxHOCTH. C NOMOILLIO CrielHab-
HOro Npeobpa3oBaHHA KOOPAHHAT H COOTBETCTBYIOILETO PA3JIOKEHHS 3HAYCHHI TEMNEPATypbl YpaBHe-
HUE IHEPrHH NPHBOIHTCH K CHCTEME YDABHEHHIl B YaCTHEIX TPOH3BOIHBIX, COASPKAIIHX YHHBEPCAbHbIE
GyHKIAH, KOTOpbIE MOXHO 3aTaGYNHPOBATL Pa3 ¥ HaBceraa. YHcheHHble NPpUMEpbl NPUBEACHB! LISt
H3OTEPMHUYECKOR ITOBEPXHOCTH H JUIR NMOBEPXHOCTH, TEMMNEPATYPA KOTODOH SIBNSETCH CTYNEHMATO-
pa3psiBHOl QyHkitMeif, B cnysasx spamaiouleiics chepsl ¥ BPALAIOLIETOCS AHCKA. MonyueHubie
Pe3YAbTATHE CONOCTABAECHBl ¢ HMEIOLIHMHCA B IMTEPATYPE PACYETHBIMH JAHHBIMH.



