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FORCED CONVECTION OVER ROTATING BODIES 
WITH NON-UNIFORM SURFACE TEMPERATURE 
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(Received 23 February 1978 and in yevjsed~r~ 24 May 1978) 

Abstract-An anaiyticai method is deveioped for obtaining the temperature distribution and the rate of 
heat transfer in laminar boundary-layer forced convective flow over a rotating body of revolution having 
a step change in surface temperature. By using a special coordinate transformation and an appropriate 
series expansion of the temperature, the energy equation becomes expressible in terms of a set of partial 
differential equations which contain universal functions. These universal functions can be tabulated once 
and for all. Numerical examples are presented for an isothermal surface and for a surface which has a step 
discontinuity in temperature for the special cases of a rotating sphere and a rotating disk. These results 

are compared with values obtained from other formulas available in the literature. 

NOMENCLATURE 

for sphere, 

d2R 

2u for disk ; 
dimlnsionless stream function, defined 
in (Sa, b); 
dimensionless rotating velocity, defined 
in (5~); 
characteristic Iength for body ; 
Nusselt number ; 
Prandtl number = V/E; 
wall heat flux ; 
radius of body at x ; 
sphere or disk radius; 

RU 
Reynolds number = ---? ; 

V 

temperature ; 
velocity component in the x direction ; 
velocity at outer edge of boundary layer; 
approach velocity; 
velocity component in y direction; 
velocity component in rotating direction; 
coordinate measured along surface from 
front stagnation point ; 
location in x direction where surface 
temperature has a step change; 
coordinate defined in (9a); 
coordinate measured normal to x ; 
coordinate measured in rotating direction. 

Greek symbols 
a, thermal diffusivity ; 

BY x/R ; 
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4s dimensionless y coordinate, defined in (4); 

9, 
T-T, 

dimensionless temperature = T ; 
m 

A, wedge parameter, defined in (6; 

v, kinematic viscosity; 

L dimensionless x coordinate, defined in (3); 

:O> 

dimensionless coordinate defined in (SC); 

6 

dimensionless coordinate defined in (9b); 
angular velocity. 

Subscripts 

W, evaluated at wall; 

60, evaluated at approach conditions. 

BY SPINNING an axisymmetrical body in a forced 
flow field, the fluid near the surface of the spinning 
body is forced outward in the radial direction due to 
the action of centrifugal forces. This fluid is then 
replaced by fluid moving in the axial direction and, 
therefore, the axial velocity of a fluid in the 
neighborhood of a spinning body has a higher value 
as compared to that for a non-spinning body. This 
increase in axial velocity results in enhancing the 
convective heat-transfer rate between the body and 
the fluid. 

The application of the above-mentions idea in 
order to develop rotating systems for enhancing the 
heat-transfer rate has been the subject of many 
investigations for the past two decades. For example, 
Hickman [l] envisioned the possibility of rotating 
condensers for sea water and spacecraft power 
plants. Ostrach and Braun [2] proposed a method of 
cooling the nose cones of space vehicles during re- 
entry by spinning the nose in order to set the 
surrounding fluid into a rotating motion. By veil 
cooling of the hot rotating surfaces, Rossler and 
Mitchell [3] reported that the performance of radial 
flow gas turbines has heen improved. The number of 
journal articles dealing with flow and heat transfer in 
rotating systems has also been increasing rapidly. 
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The interested reader may refer to a monograph by 
Kreith [4], as only the articles that are closely 
related to the present investigation will be cited here. 

The heat transfer from an isothermal rotating 
sphere was first analyzed by Siekmann [5] using the 
Blasius series technique. An exact analysis for the 
laminar forced flow against a rotating disk having 
either a uniform surface temperature or a power-law 
surface temperature distribution was given by Tien 
and Tsuji [6]. Recently, the authors [7] have 
analyzed the momentum and heat transfer rates 
through laminar boundary layers over rotating 
isothermal bodies of revolution of fairly arbitrary 
shape by employing Merk’s series expansion tech- 
nique 183. Numerical results were presented for a 
sphere and a disk. Chao and Greif [9] have 
proposed a technique for solving the non-uniform 
surface temperature case by expanding a two-term 
velocity profile in a Taylor series in terms of the 
coordinate normal to the surface and then using a 
unique coordinate transformation which is similar to 
that used for two-dimensional stationary bodies 
[lo]. Following this approach, they were able to 
express the solution in terms of universal functions 
and as a perturbation from Lighthill’s [l l] one-term 
linear velocity profile result. 

limitation used in [9] can therefore be relaxed. In 
addition, our temperature results have less terms in 
the series for the same order of the velocity profile as 
compared to Chaos [12] method, and are thereby 
easier to apply for both uniform and non-uniform 
surface conditions. Numerical results are presented 
below for a rotating sphere and a rotating disk. 

2. PROBLEM STATEMENT AND ANALYSIS 

Consider the steady, laminar axisymmetrical forced 
convective flow of an incompressible fluid over a 
rotating body. An initial portion of the rotating body 
of length x0 is kept at the same temperature, T,, as 
that of the incoming fluid, and the remaining portion 
of the rotating body has a surface temperature step 
change to a uniform value T,. The physical model 
and the coordinate system are shown in Fig. 1. The 
resulting temperature variation is limited so that 
changes in fluid properties are assumed to be small 
and thus are neglected, and the velocities involved 
are not so large that viscous heating is important. 

For a non-rotating body, the Prandtl number L 
alone determines the thickness ratio of the momen- 
tum to the thermal boundary layer and, therefore, for - 

- 

FIG. 1. Physical model and coordinate system. 

large Prandtl numbers or for the region near the - 

point of discontinuity, the two-term velocity profile 
may accurately represent the actual velocity profile 
in the regions where significant heat transfer occurs. 
For a rotating body, however, this thickness ratio 
depends not only on the Prandtl number but also 
inversely on the rotating velocity. This implies that 
for high rotating velocities, the momentum boundary 
layer-thermal boundary-layer thickness ratio de- 
creases, and, therefore, the velocity profiles in the 
regions where significant heat transfer occurs cannot 
be accurately represented by a two-term expression. 
The error in using the two-term velocity profile in 
solving the energy boundary-layer equation becomes 
especially significant for lower Prandtl numbers. In 
recognizing this difficulty, Chao [12] extended his 
original technique [lo] to take into account more 
terms in the velocity profile in the solution of the 
energy boundary-layer equation. In his technique, 
the temperature profile was expressed as a multi- 
infinite series and the accuracy of the results depends 
both on the convergence of the series and the 
method of series truncation. The accuracy of Chao’s with .the boundary conditions 

results has only been discussed for the case of a 
rotating disk. 

With the above assumptions, the energy 
boundary-layer equation is linear and the solution 
for any arbitrary surface temperature distribution 
can be obtained by superposition. If one chooses 
non-rotating coordinates x, y and Z, with I repre- 
senting the distance measured along a meridian 
curve from the forward stagnation point of the body, 
y representing the distance normal to the body, and z 
the distance in the direction of rotation, the 
boundary-layer energy equation for the problem is 

ae ae a28 
u-++-=a- 

ax ay ay2 
(1) 

e(x,o) = 1(x-x,) 

6(x,, y > 0) = 0 (2) 
0(x, co) = 0 

In the present investigation, an entirely different 
analytical method is proposed. The great advantage 
of the present method is that one can refine a where 8 = (T-T,)/(T,--T,) and 1(x-x,) is the 
solution by obtaining more terms in the series Heaviside unit operator. The general method of 
solution in a straightforward way, thus taking into obtaining the velocity components u, u and w, has 
account as many higher order terms in the velocity been reported in the previous paper [7], and will be 
profile as one desires. The two-term velocity profile briefly summarized here along with the results. 
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To solve the momentum equation, the following 
dimensionless coordinate transformation is intro- 
duced, following Merk [ 141, 
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and where b(6) is an undetermined parameter to be 
specified later. The transformations (9a-c) are a 
generalization of the transformations used by Chao 
and Cheema [15] in treating forced convection in 
wedge flow with a step discontinuity in surface 
temperature. Making use of the velocity components 
u and v given by (5a,b) and transforming the 
variables x to X and r~ to c according to (9a, b), the 
energy equation (1) becomes 

(3) s x U, r= dx 
x4{= --- 

ou,L= L 

The velocity components U, u and w which satisfy the 
equations of continuity and momentum and the 
boundary conditions are given in [7] as 

f ue 
’ = - x (2tRe,)“’ 

(54 

.[,+~,~+(A+~~-+~] (5b) 

w = r&e, 9) (5c) 

where A is a “wedge parameter” defined by 

A=!?%. 
e 

The dimensionless stream function f(& q) and di- 
mensionless rotating velocity function g(&q) satisfy, 
respectively, 

f'..+B.+*(l-f.=)+~~$.~)g= 

= 2[ 
i 

yg - p$ 1 (7a) 

g~~+fg'--gf'~$)=251/~~-g'$] f7b) 

with the boundary conditions 

f = f' = 0, g = 1 for tl = 0 @a) 

f'= 1, g =0 for ~3 co. (gb) 

In the foregoing, the primes denote differentiation 
with respect to q. Although the velocity components 
u and v do not depend on the function g explicitly, 
the solution for f ([,q) must be obtained by a 
simultaneous solution of (7a) and (7b). The general 
solution method using Merk’s series is proposed in 
[7], in which numerical results were reported for the 
rotating sphere and the rotating disk. 

The main objective of the present analysis is to 
obtain the solution of the energy equation (1) 
satisfying the boundary conditions (2). To this end, 
we further introduce a transformation [ 131 as 

with 
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t9b) 

with the boundary conditions 

f3(_X,[)=l for [=O (lla) 

0(X,() =0 for i-co. (1Ib) 

In (lla,b), 0 < X G 1 and 0 < C < co, and the 
arg~ent Q of the velocity function is related to c 
according to (9b). At the location where the 
temperature has a discontinuity, 5 = &, and X = 0, 
so 6 + co. The entrance condition merges into (1 lb). 

To obtain the solution to (lo), we first expand 
f (5, v) and g(5, II) in power series of the form 

(12) 

and 

The quantities (2@ dr/dt - r’~‘/~~) and (e/r dr/dc) 
in (7a,b) are functions of x only, and since x is 
transformed to r, these quantities can be treated as 
functions of 5 only. The coefficient’s a,% and b,‘s in 
(12) and (13) can therefore be determined by 
substituting (12) and (13) into (7a) and (7b), 
respectively, and equating the coefficients of like 
powers in r~. The results are 

2e dr r2Q2 
a,= -A_--- 

r d< U,” 

2< dr r2Q2 
a,= -2b,--- 

r d< Uf 

+ 2{a2a;, . . . , etc., and I 

b, ~2 
a? ,,4 

b2 =0 

b3 =a=:$ ,..., etc., 

(15) 

where primes denote ~ffer~tiation with respect to {. 
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Substitu~ng rl= [X/b into (12), the series for the f 
function becomes 

(16) 

from which we obtain 

af -=a2~X+$$X2+$$X3+... 
atl 

(17) 

and 

4 5 

+p+x4+$$X5+.... (18) 

We further seek a series solution for 0(&c) of the 
form 

with 

6 = 2 &&,I)X” (19) 
n=O 

&J&O) = 1, f?,(&O) = 8,(&O) = . . . = 0 (20a) 

e,(<,CO)=e,(&a))=..,=o. (20b) 

By substituting (16), (17), (18) and (19) into (lo), 
and collecting terms of like powers in X, we obtain a 
sequence of second order, linear differential equa- 
tions which the 8”‘s have to satisfy. These equations 
(for n 2 1) depend explicitly on the Prandtl number 
and on the a,‘s in the dimensionless velocity function 
(16), and we therefore rewrite the 0,‘s in terms of 
universal functions so that the solutions can be 
evaluated once and for all. To this end, let us rewrite 
f?r, f12, B3, etc., as 

01 = MB, (21) 

e2 = A426,,r +lvB,,, (22) 

03 = M3g3,, +PB3,2+MN83,3 +@3,4 (23) 

etc., . . . , with 

M+, NE-a, 
2 2a2b2 

p=- 

By using these universal functions and repeating the 
same operations as described before, we find that Bo, 
8, and the &‘s satisfy the following equations: 

~6 + 3r2eb = 0 (24) 

t?; + 3S’e; - 3@, = w. (25) 

pi,, +3[282,, -6Je,,, = [36; --c28, (26a) 

gi.2 f 3[‘82.2 - 6(82,2 = 14@o (26b) 

B;‘,, +3r2e;,, -9N3,i = C31J2,, -2~2&,1 (27a) 

@;,2 + 3[‘B;,, - 9&, = &?& (27b) 

= c48; -c38, +536;*2-2c282,2 (27~) 

&,4 + 31’e;,4 -9@,,, = f -31’ +2C)Bb (27d) 

with the associated boundary conditions 

eo(C,O) = 1, &(5,0) = e,,,(t,o) = ‘. . = e,,,(t,o) = 0 

@o(L@J)= ~*(5,~)=~2,,(5,co)=... =83,4(5,co) 

= 0. 

In the above equations (24)-(27d), we have defined 
the undete~ined parameter b(t) as b(t) 

= (a2P~/3!)i’3, and this value has been substitute 
into the LHS of the equations. The primes appearing 
in these equations denote differentiation with respect 
to [. By choosing the parameter b(c) in this form, we 
are able to express equations (24)-(27d) in forms 
that are independent of the Prandtl number and A, 
and they can therefore be solved once and for all. 
For wedge flow (non-rotating), a2 becomes constant 
and reduces to the form defined in [15]. 

Solutions for equations (24) and (25) can be 
obtained in closed form and are 

I-(1/3, r3) 
e,(e) = 1 - ~ 

l-(1/3) 

Q,(r) = 1 - <[I(4/3) - I-(4/3, C”)]. 
5F(l/3) 

(29) 

Their derivatives at the surface are, respectively, 

P*(O) = - 3 - = -1.1198 
Ftl/3) 

(30) 

and 
8; (0) = l/15. (31) 

Equations (26a), (27a) and (27b) are precisely 
identical to those given in [15] for wedge flow with a 
non-rotating body (in [15] the notation is P, = &,, 
F,,, = &i, and F,,, = I$,). These equations are 
numerically integrated in [15] and the universal 
functions tabulated in the paper can therefore be 
directly applied to the present problem. The remain- 
ing equations, (26b), (27~) and (27d) were numeri- 
cally integrated using a fourth order Runge-Kutta 
procedure with a uniform step size of A[ = 0.01. The 
resulting values of II,,,, SI,,, and &4 are tabulated 
in Table 1. To calculate the surface heat flux, the 
associated surface derivatives are required, and they 
are tabulated for the reader’s convenience as follows: 

go(O) = - 1.1198; 8;(O) = l/15; 

&(O) = 0.81748 x lo-‘; 8;,,(O) = 0.40871 x lo- * ; 

i&(O) =0.17204 x lo-‘; 8,,,(0)=0.20737 x 10-t; 

e;,,(O) = 0.12903 x lo- r ; e;,,(O) = 0.64167 x lo- ‘. 

With the availability of these universal functions 
and their surface derivatives, the determination of 
the temperature field in the boundary layer and the 
local heat-transfer rate for any arbitrary Prandtl 
number and rotating parameter reduces to a simple 
algebraic operation. For convenience, the dimension- 
less temperature and local wall heat flux can be 
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Table 1. Universal functions f?,j 
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order terms of the 0,‘s in (19), we may readily 
provide more terms in the series solution (32) and 
(33a,b) such that the higher order terms in the 
velocity distribution (12) can be properly accounted 
for in the solution to the energy equation. The 
accuracy of the results by using a finite number of 
terms in the series provided in this paper depends 
largely on the convergence of the series, i.e. on the 
Prandtl number, rotating velocity and the range of 
X. For small Prandtl number and large rotating 
velocity and X N 1, the series may become semi- 
divergent and Euler’s summation method [16] may 
be used for summing the series. For large Prandtl 
number, or in the region close to the point of surface 
temperature discontinuity, the thermal boundary- 
layer thickness is comparatively much thinner than 
that of the velocity boundary layer so that a linear 
velocity distribution may be used for the solution of 
the energy equation as done by Lighthill [ll]. This is 
the case of retaining the first term in (16), i.e. 
f = (a2/2)([*/6*)X2. By substituting this velocity 
profile into (10) and performing a similar manipu- 
lation as before, the resulting temperature field is 

i a 2.2 x 10 a 3,3 x 10 a 3.4 x 10 

0.0 0 0 0 
0.1 0.04088 0.01291 0.06075 
0.2 0.08189 0.02590 0.10351 
0.3 0.12318 0.03918 0.11732 
0.4 0.16462 0.05305 0.09902 
0.5 0.20522 0.06781 0.05279 
0.6 0.2427 1 0.08395 -0.01118 
0.7 0.27341 0.10141 -0.07917 
0.8 0.29274 0.11982 -0.13729 
0.9 0.29646 0.13781 -0.17487 
1.0 0.28227 0.15293 -0.18704 
1.1 0.25108 0.16183 -0.17544 
1.2 0.20732 0.16131 -0.14691 
1.3 0.15795 0.14969 -0.11066 
1.4 0.11037 0.12795 -0.07516 
1.5 0.07032 0.09980 - 0.04602 
1.6 0.04063 0.07044 -0.02535 
1.7 0.02116 0.04467 -0.01252 
1.8 0.00988 0.02528 -0.00553 
1.9 0.00411 0.01269 -0.00217 
2.0 0.00152 0.00561 - 0.00076 
2.1 0.00049 0.00218 - 0.00023 
2.2 0.00014 0.00074 -0.00006 
2.3 0.00004 0.00021 -0.00001 

The universal functions for 8, ,, 8,,, and 8,., can be 
found in Table 1 of [15] in which these functions are 
denoted, respectively, by F,, F,,, and F,,,. 

recast in terms of these universal functions and their 
derivatives as 

and 

= e,+MB,X+(MZB,,,+NB,,,)X* 

+(M383,, +pB3,, 

+ MNd,,, + Q&,)X3 + . . . (32) 

(33a) 

where 

de ( >I -- 
a6 ,l=o 

= f e;(g,o)xn 
n=O 

= 1.11985-M/15X-(0.81748x lo-*M* 

+0.40872 x lo-‘N)X*-(0.17204 x lo-*M.? 

+0.20737x lo-‘P+O.12903 x lo-‘MN 

+0.64167 x lo-‘Q)X3 +. . Wb) 

As has been demonstrated in the text, the 
derivation of the above equations does not impose 
any approximations or limitations, and therefore 
they are an exact form of series expression. With 
straightforward numerical integration of the higher 

e, = 8, + QO~,~X~ + . . (34) 

where the subscript 1 denotes the solution for a linear 
velocity profile. The corresponding wall heat flux is 

q,, = 2-“2(3!)-“3k(T,-T,) 

x (fy ‘(2) +x- 1(Pra2)1/3 

x [1.11985-0.64167x lo-‘QX3]. (35) 

These two expressions can also be obtained from 
(32) and (33a,b) by simply letting Pr-+ 00. By 
comparing equations (34) and (35) with (32) and 
(33a,b), the excess terms appearing in the latter 
equations are obviously due to the contribution of 
the second and third terms of the velocity distri- 
bution in (16). The application of the present method 
to the cases of a rotating sphere and a rotating disk 
will be made in the next section. 

3. APPLICATION TO A ROTATING SPHERE 

In this section, we would like to demonstrate how 
one can apply the general equation (33a,b) to 
calculate the heat transfer characteristics of a 
rotating sphere. For a spherical body, it is known 
from potential flow theory that U&J, 
= 312 sin XfR, and from the geometry, r/R = sin x/R. 
With U,/U, and r/R thus defined, the quantities 
(25/r drldg .r*fi*/U~) and (45/r dr/d<) appearing in 
(14) and (15) become, respectively, 

45 dr 

Tz=2A 

(36) 

(37) 
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where 

A= 
4cos/3-6cos2/?+2cos4~ 

3 sin4 p 

and 

/k-f. 

Defining a local Nussel? number as Nu = R~~/~(T~ 

- T,) and repiacing the characteristic length L by R, 

we obtain 

NuRe, 1/Z = 0.38914(P~1,)“‘~ 

(384 

in which (- %/a[)., ,, is given by (33b) but with 

h4= 
3h(l +B) Mb, 

2a,b 
, N=- 

a,b2 

(I-21\)+--2fa; , 
2ABbf 

4 1 
(38b) 

a2 

The values of ~~(5) and b,(t) in (38a,b) can be 

obtained from the solution of the momentum 
boundary-layer equations in the following Merk’s 
type of series expressions refined in [8] as 

a~(<) = f”(A,O) = fd’(A,O)+ 25 z f,“(A,O) 

+4<‘$j;‘(A,O)+... (39) 

b,(5) = s’(A,Ot = sXA,O)+2:3,~A,O) 

+4<‘$3;(A,O)+... (40) 

and the values of fi”(A, 0) and gf(A, 0) are tabulated 
for i = 0, 1 and 2 for various values of the rotation 
parameter in [7]. 

To examine the accuracy of the present formula, 
we first consider the case of an isothermal surface. 
Under this condition X = 1 and the error resulting 
from using a finite number of terms in the sequence 
(33b) is the largest due to the dower convergence for 
larger values of X. The local heat-transfer results, 
expressed as NuRe, Ii2 for Pr = 1.0 are summarized 
in Table 2. Two sets of our data are presented in the 
table. The first set of data were obtained by using the 
values of a, and b, calculated from the three term 
Merk’s series (39) and (40) using the information 
given in [7], with the value of a; obtained by 
Taylor’s non-uniform interpolation method. The 

Table 2. Comparison of NuRe, “’ calculated from various methods for an isothermal rotating sphere in forced flow; 
Pr = 1 

B=l B=4 

Present analysis Present analysis 

xlR 

Equation (38a) Equation (38a) 
with Merk’s 2-term 3-term with Merk’s 

a2 = .fm, 0) series velocity velocity a2 = fd’(A 0) series 
Equation b, = g&i, 0) 3 terms profile profile Equation b, = gb(A. 0) 3 terms Siekman 

(38a) a; = 0 [71 r91 Cl21 (38a) a; = 0 c71 I51 

0.0 0.9493 0.9493 
0.244 0.9390 0.9389 
0.474 0.9116 0.9110 
0.717 0.8635 0.8620 
0.951 0.7991 0.7955 
1.103 0.7482 0.7419 
1.215 0.7063 0.6968 
1.303 0.6495* 0.6$75 
1.374 0.6181* 0.6223 

0.9588 0.8904 0.9589 1 sKN7 1.0007 1.0214 1.0214 
0.9482 0.8815 0.9898 0.9897 1.0099 1.0101 
0.9195 0.8570 0.9608 0.9602 0.9789 0.9788 
0.8688 0.8143 0.9101 0.9082 0.9239 0.9237 
0.7998 0.7567 0.7792* 0.8422 0.8376 0.8484 0.8485 
0.7436 0.7104 0.7885 0.7804 0.7862 0.7875 
0.6961 0.6716 0.7064* 0.7445 0.7319 0.7328 0.7362 
0.6544 0.6378 0.6888* 0.6892 0.685 1 0.6918 
0.6171 0.6078 0.6275* 0.6544* 0.6504 O&414 0.6528 

B= 10 

0.0 1.0670 1.0670 1.1141 
0.244 1.0555 1.0553 1.1014 
0.474 1.0248 1.0239 1.0676 
0.717 0.9709 0.9685 1.0061 
0.951 0.8991 0.8930 0.9218 
1.103 0.9426 0.8315 0.8516 
1.215 0.7968 0.7790 0.7904 
1.303 0.7535* 0.7323 0.7349 
1.374 0.7144* 0.6892 0.6826 

*Euler’s summation technique was used. 

0.6933 1.0914* 
0.6885 
0.6755 
0.6534 
0.6245 0.9264* 
0.6012 
0.5809 0.8042* 
0.5645 
0.5440 0.7223* 



Forced convection over rotating bodies 

second set were obtained by using the local similarity 
solution, i.e. one term in the series [a2 = fl(A, 0) 
and b, = gb(h,O)]. By comparing these two sets of 
results, the maximum discrepancy is about 3.5% for 
the range of parameters studied. It is therefore 
recommended that for engineering applications in 
which extreme accuracy is not strictly essential, that 
the local similarity values of a, and b, may be used 
for calculation of the heat-transfer characteristics at 
the surface. By comparing our data with that 
obtained by the three term Merk’s series [7] and the 
four term Blasius series solution of Siekmann [5] 
(only the case of B = 4 was given in his paper), the 
agreement is considered to be satisfactory. The 
results obtained from the formula using the two term 
velocity profile of [9] generally underestimate the 
values, especially for the case of B = 10. This 
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4. APPLICA~ON TO A ROTATING DISK 

The second numerical example considered is the 
heat transfer from a finite rotating disk of radius R, 
with or without a free stream velocity U, impinging 
normally onto the disk surface. Under this condition, 
r = x, t~,/IJ, = 2x/xR, 3 = jnR@JZU,) and, there- 
fore, A = 0.5 which is a constant. The u2 and b, now 
become u2 = [fd’(A,O)J1\=o.s and b1 = [sb(A,O&=e.5 
as given by (39) and (40). Since a, is independent of 
5. a; = 0. 

Let us define the Nusselt number for this problem 
in the same manner as that done by Tien and Tsuji 
[6f. Then (33a,b) can be recast in the foIIo~ng form 
as 

Nu = 
qwv”2 

k(T -T )(c?+sPy w m 

Table 3. Heat-transfer rate, NuRe, Ii’, for a rotating sphere 
with Pr = 1 

Step-change 
position 

NuRe, ‘I* 

x/R E=l 8=4 B= 10 

x0/R = 0.22 0.244 1.5415 1.6644 1.8445 
0.4739 0.9514 1.0049 1.0765 
0.7165 0.8746 0.9224 0.9853 
0.9507 0.8039 0.8474 0.9052 
1.1030 0.7512 0.7918 0.8465 
1.2148 0.7086 0.7480 0.7997 
1.3027 0.6512* 0.6907* 0.7556* 
1.3744 0.6195’ 0.6559* 0.7161* 

x,,‘R = 0.90 0.9507 1.6866 1.8333 2.0493 
1.1030 1.0544 1.1269 1.2345 
1.2148 0.9011 0.9582 1.0429 
1.3027 0.7846* 0.8386* 0.9248* 
1.3744 0.7267* 0.7739* 0.8503* 

*Euler’s summation technique was used. 

suggests that under this condition the use of the 
quadratic velocity profile in the analysis of the 
energy equation is not adequate. Also included in 
Table 3 are the Nusselt numbers calculated by the 
series solution [ 121 in terms of curvature parameters 
.s,‘s by retaining a three term velocity distribution. 
Twelve terms in the series, equation (22b) of [12], 
were used in the calculation. A significant improve- 
ment is seen for both B = 1 and 10. I 

The heat-transfer rate for a non-uniform surface 
temperature can also be readily obtained ‘from 
(38a,b). The parameter &, in the transformed 
variable X now becomes 

The heat-transfer rates, expressible as N&e, 1/Z, for 
non-unifo~ surface temperatures for the special 
cases of x,/R = 0.22 and x0/R = 0.90 are tabulated 
in Table 3 for B = 1, 4 and 10. To our knowledge 
there is no previously published data available for 
comparison with our results. 

where 

- (0.07357+0.2312S,)~~X* 

- (0.04645 +0.218973, 

+0.1106S,)s3X3 +. . .] (41) 

2u 
L;x= l- “0 

3 -l/3 

C= 

i i)i 

(2)“Z 

The numerical constant CI* depends on the rotation 
parameter, I?, and has been calculated by Hannah 
[173 (a* = 2a in her paper). It may also be obtained 
by the above relation using the value of az 

= Cfd’(A, 0Lo.s reported by the authors [7]. The 
value of b, can be shown to be related to b of [173 
by the relationship 

h = CsbV, O)l,,=o.s = --sb (42) 

and can be found in [7] or by using b from [17]. 
For a disk at a uniform temperature, x,, = 0, and 

we simply substitute X = 1 in (41). By a completely 
different technique, Chao and Greif [9J have ob- 
tained an expression for an isothermal rotating disk. 
In the present notation, it is 

iVu= ?-- ( ! 
‘JYJ* 1’3[l.11985-0.18868~ 

-0.07271s’-0.05079~~ -. . .I. (43) 

By comparing (41) with X = 1 with (43), it is seen 
that the functional forms of both equations are quite 
similar. The first term on the RHS of both equations 
is identical, and represents the contribution of the 
linear component of the velocity profile. The second 
terms are almost identical and differ only shghtly in 
the value of the numerical coelEcient, as do the first 
elements of the third and fourth terms in (41) when 
compared with the third and fourth terms of (43). 
These terms are contributed by the quadratic 
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component of the velocity profile. The elements of 5. CONCLUSIONS 

the third and fourth terms in (41) which contain S, A new formula is presented for calculating the rate 
and S, are contributed by the third and fourth order of heat-transfer from a rotating body, having a step 
terms of the velocity profile, and these elements are change in surface temperature, placed in a forced 
naturally missing in (43) since only the quadratic flow stream. A great advantage of the present 
velocity profile was used in its derivation. For a non- method is that one can refine the solution by 

rotating body, B = 0, and both S, and S, are equal obtaining more terms in the series in a straightfor- 

to zero. In this case, for moderate Prandtl numbers, ward manner, thus taking into account more terms 
the two-term velocity profile is adequate for obtain- in the velocity profile. The accuracy of using a finite 

ing a solution to the energy equation. For B + ~13, number of terms in the series solution is discussed for 

i.e. for pure rotation, we get S1 = -0.314 and S, the cases of a rotating sphere and a rotating disk 
= 0.0493 by using the values of a and b given in having uniform surface temperatures. For engineer- 
[17]. The S, and Sz are of the same order of ing calculations, it is recommended that the simi- 
magnitude as the numerical coefficient in the same larity solution value, f;‘(O) and g;(O), may be used 

Table 4. Comparison of Nusselt number for forced flow against a rotating disk with uniform surface temperature 

NU 

Pr 

1 

B Present Three-term Two-term 
analysis velocity velocity Tien and 

equation (41) representation representation Tsuji 
x=1 L-121 [91 [61 

0 0.755 0.7643 0.7643 0.762 
1 0.652 0.659 0.628 0.658 
4 0.546 0.548 0.484 0.557 
0z 0.396 1* 0.400 0.309 0.396 

10 0 1.748 1.752 1.752 
1 1.529 1.518 1.535 
4 1.330 1.297 1.340 
co 1.139 1.059 1.134 

*Euler’s summation technique was used. 

term, and, for moderate Prandtl numbers but large 
rotation parameter values, it is thus seen that the 
two-term velocity profile is not adequate in obtain- 
ing the solution to the energy equation. Using a 
three-term velocity profile, Chao [12]* reported the 
Nusselt number in the present notation as 

Pra* ‘I3 
Nu= - 

( 1 3 
[1.11985-0.18868~ 

- [0.072714 +0.23647S,]e2 + . . .]. (44) 

Surprisingly, the functional form of (44) is quite 
similar to our equation with a slight difference in the 
numerical coefficient in the second and third terms. 
A numerical comparison of the results given by (41), 
(43) and (44), along with those of Tien and Tsuji [6] 
obtained by a numerical integration technique, is 
presented in Table 4. For the case of B = 4 and Pr 
= 1, our results deviate by -0.2% from those of [6]. 
This degree of accuracy is also evident for B + co 
and Pr = 1. For Pr = 1 and B = 4, the two-term 

velocity formula (43) deviates by - 13.4%. Signifi- 
cant improvement is seen when the three-term 
velocity formula (44) is used. 

*The E, and Ed defined in [12] relate to E and S, as e1 = 
--E, sZ = -4(2)“‘/3 S,s’. The positive sign appearing in 
front of the second and third terms of (28) in [12] should 
be negative. 

for a, and b, in the calculation using our formula 
without introducing a significant error for the 

rotating sphere for Prandtl numbers equal to or 
larger than 1. Our formula may also be used for 
mass-transfer problems by simply replacing 0 by 
(C - C,)/(C,- C,), and the results may be extended 
for any arbitrary surface temperature or con- 
centration distribution by the use of superposition. 
Finally, in order to take into account a prede- 
termined number of terms in the velocity profile in 

the solution of the energy equation, our formula 
provides probably the most simple and rapid 
calculation procedure for the temperature field and 
the local heat flux for non-isothermal surface 
conditions as any yet presented in the literature. 
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CONVECTION FORCEE SUR DES CORPS TOURNANTS AVIiC 
TEMPERATURE PARIETALE NON UNIFORME 

R&smn&On developpe une mtthode ~alytique pour calculer la dist~bution de tem~rature et le flux de 
chaieur en convection forc&e avec couche hmite laminaire sur un corps de r&volution en rotation et ayant 
un changement de temperature par&ale en echelon. En utilisant une tr~sfo~ation sp&ciale des 
coordonnees et un diveloppement en serie approprii, l’equation d’inergie s’exprime en un systeme 
d’equations aux derivees partielles qui contient des fonctions universelles. Ces fonctions peuvent itre 
tabulees une fois pour toutes. On presente des exemples numeriques pour une surface isotherme et pour 
une surface ayant une discontinuite de temperature en echelon, dans les cas particuhers d’une sphere et 
d’un disque en rotation. Ces resultats sont compares avec des valeurs obtenues a partir d’autres formules 

disponibles dam la bibliographie. 

ERZWUNGENE KONVEKTION AN ROTIERENDEN KGRPERN 
MIT UNGLEICHF~R~IGER VERT~ILUNG DER 

OBERFL~CHENTEMPERATUR 

Zusammenfassung-Ein analytisches Verfahren wird entwickelt, urn die Tem~raturverteilung und die 
Warmestromdichte zu ermitteln, die sich in einer erzwungenen Konvektionsstromung mit laminarer 
Grenzschicht an einem rotierenden Umdrehungskiirper ergibt. Die Oberflkhentemperatur wird dabei 
sprungfijrmig verandert. Durch Verwendung einer spedellen Koordinaten-Transformation und einer 
geeigneten Reihenentwickhmg fur die Temperatur I%t sich die Energiegleichung durch ein System 
partieller Differentialgleichungen ausdriicken, die universelle Funktionen enthllten. Es ist moglich, diese 
universellen Funktionen ein fur allemal zu tabelheren. Es werden numerische Beispiele anhand der 
SpeziallIille einer rotierenden Kugel und einer rotierenden Scheibe gezeigt, und zwar jeweils fiir eine 
isotherme Oberfliiche und fur eine Oberfllche, die eine sprungfdrmige Temperaturanderung aufweist. 
Diese Ergebnisse werden mit Werten verglichen, die mit Hilfe von anderen Gleichungen aus der 

Literatur gewonnen worden sind. 

BbIHYXQEHHAS1 ‘K~KIIHS OKOJIO BPAIIIAI#fIIPTXCS TEJI IIPM 
HEO~WWi’O~Oti TEMHEPATYPE fIC#EP~OCTM 

Aruioraurn-Paapa6oran aHanHTH%cKHfi MeToA OnpeAeneHHa norm TeMnepaTyp B HHTeHCHniiocTH 

Tennoo6MeHa B JlaMAHapHOM nOQaHH’,HOM CJlOe npH BbIHyxAeHHO&“, KOHBeKUHW OKOJIO LlBWKymeRYZr 

TeJla BpameHHI npH CTyIleHVaTOM H3MeHeHHH TeMnepaTypbI IlOElepXHOCTH. c IlOMOIUbK) CUeUHaJlb- 

HOI-0 Upeo6pa3OBaHHs KOOpAAHaT H COOTBeTCTByiolUerO ~3JIOwteHHfl 3HaVeHHfi TeMIlePaTypbI ypBHe- 

HHe 3lieprHH npNBOAHTC5l K CHCTeMe ypaBHeHNk B ‘IaCTHbIX UpOH3BOAHbIX. COLlep~alUHX yHHBepGVlbHble 

+yHKUHH, KOTOpbIe MOYHO 3aTa6ynHpoBaTb Pa3 H HaBCeI’Aa. qHCJleHHble IlpHMepbI UpHBeneHbI AJISI 

H30TePMHSeCKOti UoBepXHNTB H AJIIU1R ,lOBepXHOcTH, TeMUefXSTy,,a KOTOpofi IlB,WeTCIi cTyWHqaTO- 

paspbmrroii @yrfxuiieji. E cnysaax spairratollreficn C@pbI w spamalomerocn asicxa. Ilonyvertabie 

pe3yJIbTaTbI COIlOCTaBjleHbl C ~Me~m~M~C~ B JIHTepaTyPe paCq~TH~MH itaHHb,MR. 


